I.E.S. ALCÁNTARA (Departamento de Matemáticas)

HOJA DE EJERCICIOS

1.- ¿Son iguales las matrices A=
$$\begin{pmatrix} 1 & -2 & 3 \end{pmatrix}$$
 y B= $\begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$?

Halla, si es posible, las matrices $A \cdot B$, $B \cdot A$, A + B, $A^{t} - B$, $B^{t} + A$.

2.- Halla la inversa, si es posible, de las siguientes matrices:

a)
$$\begin{pmatrix} 2 & -2 & 2 \\ 2 & -2 & 0 \\ 3 & -2 & 2 \end{pmatrix}$$
 b) $\begin{pmatrix} 0 & 1 & -1 \\ -3 & 2 & 1 \\ -2 & -2 & 2 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 0 & 3 \\ -2 & 1 & -1 \\ 3 & -1 & 4 \end{pmatrix}$ d) $\begin{pmatrix} 3 & 2 & -1 \\ -1 & 2 & 3 \\ -3 & 1 & 3 \end{pmatrix}$

3.- Dada
$$A = \begin{pmatrix} -1 & -1 & 1 \\ 2 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
 y $B = \begin{pmatrix} 1 & 0 & 2 \\ 3 & -2 & -2 \\ 1 & 1 & -3 \end{pmatrix}$, calcula, si es posible:

- a) Una matriz Y tal que $Y \cdot A = \begin{pmatrix} 2 & -1 & -2 \end{pmatrix}$.
- b) Una matriz Z tal que $A \cdot Z = \begin{pmatrix} 1 & -1 & -1 \end{pmatrix}$.

4.- ¿Qué dimensiones deben tener A y B para que exista $A \cdot B$? ¿Y para que exista $A \cdot B$ y $B \cdot A$?

5.- Sea
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{pmatrix}$$
, ¿Existe X tal que $A \cdot X = A$?

6.- Determina
$$a$$
 para que $A = \begin{pmatrix} a & a \\ 0 & a \end{pmatrix}$, verifique que $A^2 - 2 \cdot A = \begin{pmatrix} 0 & 4 \\ 0 & 0 \end{pmatrix}$.

7.- Resuelve la ecuación matricial:
$$\begin{pmatrix} 2 & 1 \\ 5 & 6 \end{pmatrix} \cdot X \cdot \begin{pmatrix} 2 & -1 \\ 4 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}$$
.

8.- Calcula x e y para que se cumpla la siguiente ecuación matricial:

$$X^2 + 2 \cdot X + I_2 = A^t$$
, donde, $X = \begin{pmatrix} x & y \\ 0 & 2 \end{pmatrix}$ y $A = \begin{pmatrix} 0 & 0 \\ -4 & 9 \end{pmatrix}$.

9.- Resuelve
$$2 \cdot X - A \cdot B^t = A^2$$
, donde $A = \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix}$ y $B = \begin{pmatrix} 1 & 2 \\ 3 & -2 \end{pmatrix}$.

10.- Calcula la matriz B que cumpla
$$A \cdot B = B \cdot A$$
, donde $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$.

I.E.S. ALCÁNTARA (Departamento de Matemáticas)

11.- Resuelve las siguientes ecuaciones, con A=
$$\begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$
 y B= $\begin{pmatrix} 0 & 0 & 1 \\ 2 & 1 & 3 \\ 0 & -1 & 1 \end{pmatrix}$:

a)
$$AXB = B^t$$

$$b) AX - (A+B)^t = I$$

a)
$$AXB = B^t$$
 b) $AX - (A + B)^t = I$ c) $2X - (A + B)^2 = 0$ d) $AX + BX = A$

$$d) AX + BX = A$$

12.- Resuelve la ecuación:
$$A+X=A\cdot X$$
, siendo $A=\begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$.

13.- ¿Son inversas las matrices
$$(A - I_3)$$
 y $\frac{1}{2}(A - 2I_3)$, siendo $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

14.- Resuelve: a)
$$\begin{pmatrix} x & 1 \\ 2x & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ y \end{pmatrix} + \begin{pmatrix} z \\ z \\ 2z \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \\ -2 \end{pmatrix}$$
 b)
$$\begin{pmatrix} 1 & -1 \\ 3 & 2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & x \\ y & -1 \\ -1 & y \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

b)
$$\begin{pmatrix} 1 & -1 \\ 3 & 2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & x \\ y & -1 \\ -1 & y \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

15.- Calcula
$$x, y, z$$
 para que $(2I_2 - A)$ sea inversa de A, con $A = \begin{pmatrix} 2 & x \\ y & z \end{pmatrix}$.

16.- Halla las matrices X e Y que cumplan:
$$\begin{cases} 2X + Y = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} \\ X - 2Y = \begin{pmatrix} -1 & -2 \\ 3 & 2 \end{pmatrix}$$

17.- Sea
$$A = \begin{pmatrix} 2 & -1 \\ a & b \end{pmatrix}$$
 y $B = \begin{pmatrix} 1 & 1 \\ c & d \end{pmatrix}$. Calcula a, b, c y d para que se cumpla:

a)
$$A^2 = A$$

b)
$$B^2 = B$$

b)
$$B^2 = B$$
 c) Ahora calcula A^{50} y B^{70} .

18.- Calcula
$$A^2$$
, A^3 , A^{30} , A^{70} de: a) $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ b) $A = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ c) $A = \begin{pmatrix} a & a \\ a & a \end{pmatrix}$

19.- Comprueba que
$$A^2 = 2 \cdot A - I$$
, con $A = \begin{pmatrix} 5 & -4 & 2 \\ 2 & -1 & 1 \\ -4 & 4 & -1 \end{pmatrix}$. Calcula A^4 usando el

resultado anterior.

20.- Calcula el rango de: a)
$$\begin{pmatrix} -1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 1 & 3 & 2 \\ 0 & 4 & 4 & 7 & 7 \end{pmatrix}$$
 b) $\begin{pmatrix} x^2 - x & 6 \\ x & 1 \end{pmatrix}$ d) $\begin{pmatrix} 1 & 1 & t \\ t & 0 & -1 \\ -6 & -1 & 0 \end{pmatrix}$