

## **HOJA DE EJERCICIOS**

1.- Calcula las derivadas de las siguientes funciones:

a).
$$f(x) = 3x^5 - \frac{6}{x^2} + \ln \sqrt{x}$$
 b)  $f(x) = \frac{2}{\sqrt{x}} + (3x - 1)^4$  c)  $f(x) = \sqrt[3]{x} \cdot x^4$ 

b) 
$$f(x) = \frac{2}{\sqrt{x}} + (3x - 1)^4$$

c) 
$$f(x) = \sqrt[3]{x} \cdot x^2$$

d) 
$$f(x) = ln\sqrt{\frac{1+cosx}{1-cosx}}$$
 e)  $f(x) = \ln(cosx) \cdot tg(5x)$  f)  $f(x) = \sqrt[3]{\frac{5}{8x}}$ 

e) 
$$f(x) = \ln(\cos x) \cdot tg(5x)$$

$$f(x) = \sqrt[3]{\sqrt[5]{8x}}$$

g) 
$$f(x) = sen(7x + \frac{1}{x})$$
 h)  $f(x) = e^{sen(x^2)} + sen(e^{x^2})$  i)  $f(x) = sen^2x \cdot 2^x$ 

h) 
$$f(x) = e^{sen(x^2)} + sen(e^{x^2})$$

i) 
$$f(x) = sen^2 x \cdot 2^x$$

$$j) f(x) = ln\sqrt{2^x \cdot x} + 3x^5$$

$$k) f(x) = sen(\ln(senx))$$

j) 
$$f(x) = ln\sqrt{2^x \cdot x} + 3x^5$$
 k)  $f(x) = sen(ln(senx))$  l)  $f(x) = \sqrt{\frac{1+x^2}{1-x^2}} \cdot 3^{senx}$ 

m) 
$$f(x) = 2^{6x} \cdot (2x^3 - 1)$$
 n)  $f(x) = \ln \sqrt[3]{\cos x} \cdot 2^{5x - 3}$  ñ)  $f(x) = \sqrt[3]{\ln x \cdot 2^{3x}}$ 

n) 
$$f(x) = ln \sqrt[3]{cosx} \cdot 2^{5x-3}$$

$$\tilde{\mathbf{n}}) f(x) = \sqrt[3]{\ln x \cdot 2^{3x}}$$

o) 
$$f(x) = (4x + \sqrt{x})^5 \cdot 3x$$
 p)  $f(x) = \cos^2(x^4) \cdot \ln(senx)$  q)  $f(x) = \frac{2^{\sqrt{3}x} + 2x}{x^2 - 1}$ 

$$p) f(x) = \cos^2(x^4) \cdot \ln(senx)$$

q) 
$$f(x) = \frac{2^{\sqrt{3x}} + 2x}{x^2 - 1}$$

r) 
$$f(x) = \frac{2^{3x} \cdot x^4}{x^2 - 1}$$

r) 
$$f(x) = \frac{2^{3x} \cdot x^4}{x^2 - 1}$$
 s)  $f(x) = \frac{sen(e^{\sqrt{3x}})}{x^2} + 2 \cdot (3x - 5)^2$  t)  $f(x) = \frac{3x \cdot senx}{2x^2 + 3}$ 

t) 
$$f(x) = \frac{3x \cdot senx}{2x^2 + 3}$$

2.- Estudia la derivabilidad de la función 
$$f(x) = \begin{cases} \frac{4}{x-2} & si \quad x < 0 \\ 2x^2 - x - 2 & si \quad 0 \le x < 3 \\ 2x - 3 & si \quad x \ge 3 \end{cases}$$
3.- Calcula a, b y c para que sea derivable la función  $f(x) = \begin{cases} a \cdot e^{2x} & si \quad x < 0 \\ b + cx & si \quad 0 \le x \le 1 \\ 5 + d/x & si \quad x > 1 \end{cases}$ 

4.- Dada la función  $f(x) = \frac{2}{x-3}$ , halla f'(4). ¿Qué significa el valor obtenido?

5.- Calcula la ecuación de la recta tangente a la curva  $y = x + \sqrt{x}$  en la abscisa x=4.

6.- Halla a para que la recta tangente a la gráfica de  $f(x) = x \cdot \ln x - ax$  en x = e sea paralela a y = x.

7.- Halla las rectas tangentes a la curva  $y = \ln x + \frac{1}{x}$  que sean horizontales.

8.- Obtén las ecuaciones de las rectas tangentes a la curva  $y = x^3 + 3x^2 + 3x + 4$ , que son paralelas a la recta de ecuación 6x - 2y + 1 = 0.

9.- Obtén las ecuaciones de las rectas tangentes a la curva  $y = \sqrt{2x+1}$ , que son paralelas a la recta de ecuación 3x - 9y + 1 = 0.

10.- Obtén las ecuaciones de las rectas tangentes a la curva y = senx, que sean paralelas a la bisectriz del primer cuadrante (y = x).

## I.E.S. ALCÁNTARA (Departamento de Matemáticas)



12.- Dada la función  $f(x) = x^3 \cdot \ln(2x + 5) + ax + b$  con a y b números reales. Hallar a y b para que se cumpla f(0) = 2 y f'(0) = 1.

13.- Dadas las funciones  $f(x) = x^3 - 7x^2 + a$  y  $g(x) = \sqrt{2x - 1} + bx$ , donde a y b son números reales, hallar a y b sabiendo que f(1) = g(1) y f'(1) = g'(1)

14.- Halla a, b y c para que la curva  $f(x) = a + bx^2 + c/x$  presente un mínimo en (1,4) y pasa por el punto (-1,0)

15.- Estudia el dominio y la monotonía de las siguientes funciones:

a) 
$$f(x) = x^3 - 4x^2 + 5x - 6$$
 b)  $f(x) = \frac{x}{x^2 - 4}$  c)  $f(x) = 2x + \frac{7200}{x}$  d)  $f(x) = \frac{x^3}{(x - 2)^2}$ 

b) 
$$f(x) = \frac{x}{x^2 - 4}$$

c) 
$$f(x) = 2x + \frac{7200}{x}$$

d) 
$$f(x) = \frac{x^3}{(x-2)^2}$$

e) 
$$f(x) = \frac{\ln x}{x}$$

e) 
$$f(x) = \frac{\ln x}{x}$$
 f)  $f(x) = e^x (x^2 - 3x + 1)$  g)  $f(x) = \frac{x^2 + 2x}{e^x}$  h)  $f(x) = e^x - x$ 

g) 
$$f(x) = \frac{x^2 + 2x}{e^x}$$

$$h) f(x) = e^x - x$$

16.- Representa las siguientes funciones:

a) 
$$f(x) = x^3 - 6x^2 + 9x$$

b) 
$$f(x) = \frac{1 - x^2}{x^2 - 4}$$

c) 
$$f(x) = \frac{x^2}{(x-1)^2}$$

a) 
$$f(x) = x^3 - 6x^2 + 9x$$
 b)  $f(x) = \frac{1 - x^2}{x^2 - 4}$  c)  $f(x) = \frac{x^2}{(x - 1)^2}$  d)  $f(x) = \frac{x^2 - 6x + 5}{x - 3}$  e)  $f(x) = \frac{x + 1}{x^2 - 3x}$  f)  $f(x) = \frac{x^4}{x^2 - 1}$  g)  $f(x) = \frac{x^3}{x^2 - 4}$  h)  $f(x) = \frac{4 - 2x^2}{x}$ 

e) 
$$f(x) = \frac{x+1}{x^2 - 3x}$$

f) 
$$f(x) = \frac{x^4}{x^2 - 1}$$

g) 
$$f(x) = \frac{x^3}{x^2 - 4}$$

h) 
$$f(x) = \frac{4 - 2x^2}{x}$$

17.- Dada la función  $f(x) = x^4 + ax^3 + bx + c$ , donde a, b y c son números reales, hallar los valores de a, b y c para que la función cumpla las siguientes condiciones:

a) pase por el origen de coordenadas

b) su derivada se anule en x = 0

c) la pendiente de la tangente a su gráfica en x = 1 valga 2.

18.- Cierto tipo de bengala permanece encendida un tiempo de 4 minutos. El porcentaje de luminosidad viene dado por  $f(x) = 25x \cdot (4-x)$   $0 \le x \le 4$  (x, en minutos). Se pide:

a) ¿Para qué valores de x se obtiene luminosidad máxima? ¿Cuál es ese máximo?

b) ¿En qué intervalo de tiempo decrece el porcentaje de luminosidad?

c) ¿Para qué valores de x la luminosidad es del 75%?

19.- El consumo de gasolina de un coche, viene dado en función de la velocidad (x), a través de la fórmula  $f(x) = \frac{3 \cdot e^{x/90}}{x}$ . Determina el consumo mínimo y a qué velocidad.

20.- El valor de cada acción, t meses después de salir al mercado y durante el primer año, viene dado por  $f(t) = t^2 - 6t + 10$ . ¿En qué mes se maximiza el valor de la acción?

21.- El precio del kilo de un producto viene dado por  $(x-3)^2$ , siendo x la cantidad de artículos vendidos. Averigua para cuántos artículos el ingreso es máximo sabiendo que no pude vender más de 10 artículos.

22.- Halla el máximo y mínimo absoluto de la función  $f(x) = \begin{cases} x^2 - 2x & \text{si } 0 \le x \le 4 \\ -2x + 16 & \text{si } 4 < x < 7 \end{cases}$